Differential Roles of Insulin and IGF-1 Receptors in Adipose Tissue Development and Function
نویسندگان
چکیده
To determine the roles of insulin and insulin-like growth factor 1 (IGF-1) action in adipose tissue, we created mice lacking the insulin receptor (IR), IGF-1 receptor (IGF1R), or both using Cre-recombinase driven by the adiponectin promoter. Mice lacking IGF1R only (F-IGFRKO) had a ∼25% reduction in white adipose tissue (WAT) and brown adipose tissue (BAT), whereas mice lacking both IR and IGF1R (F-IR/IGFRKO) showed an almost complete absence of WAT and BAT. Interestingly, mice lacking only the IR (F-IRKO) had a 95% reduction in WAT, but a paradoxical 50% increase in BAT with accumulation of large unilocular lipid droplets. Both F-IRKO and F-IR/IGFRKO mice were unable to maintain body temperature in the cold and developed severe diabetes, ectopic lipid accumulation in liver and muscle, and pancreatic islet hyperplasia. Leptin treatment normalized blood glucose levels in both groups. Glucose levels also improved spontaneously by 1 year of age, despite sustained lipodystrophy and insulin resistance. Thus, loss of IR is sufficient to disrupt white fat formation, but not brown fat formation and/or maintenance, although it is required for normal BAT function and temperature homeostasis. IGF1R has only a modest contribution to both WAT and BAT formation and function.
منابع مشابه
Insulin resistance in the liver-specific IGF-1 gene-deleted mouse is abrogated by deletion of the acid-labile subunit of the IGF-binding protein-3 complex: relative roles of growth hormone and IGF-1 in insulin resistance.
Liver IGF-1 deficient (LID) mice demonstrate a 75% reduction in circulating IGF-1 levels and a corresponding fourfold increase in growth hormone (GH) levels. At 16 weeks of age, LID mice demonstrate, using the hyperinsulinemic-euglycemic clamp, insulin insensitivity in muscle, liver, and fat tissues. In contrast, mice with a gene deletion of the acid-labile subunit (ALSKO) demonstrate a 65% red...
متن کاملImpaired Thermogenesis and Adipose Tissue Development in Mice with Fat-Specific Disruption of Insulin and IGF-1 Signalling
Insulin and insulin-like growth factor 1 (IGF-1) have important roles in adipocyte differentiation, glucose tolerance and insulin sensitivity. Here to assess how these pathways can compensate for each other, we created mice with a double tissue-specific knockout of insulin and IGF-1 receptors to eliminate all insulin/IGF-1 signalling in fat. These FIGIRKO mice had markedly decreased white and b...
متن کاملInsulin and IGF-I receptors in trout adipose tissue are physiologically regulated by circulating hormone levels.
In fish, insulin is believed to act on adipose tissue to promote lipid accumulation, but a direct role for insulin in fish adipose tissue lipogenesis has yet to be demonstrated. To investigate the role of insulin and insulin-like growth factor I (IGF-I) in fish adipose tissue function, we have investigated the presence and the regulation of insulin and IGF-I receptors in adipose tissue of brown...
متن کاملP-57: The Beneficial Adipokines in Reproductionand Infertility
Background: Adipokins are cytokines predominantely or exclusively expressed by adipose tissue that circulate and affect target tissues. Four known adipokines, adiponectin, visfatin/PBEF, omentin and vaspin, all increase tissue sensitivity to insulin, and are thus described as ’beneficial’. In this review such biological actions and potential roles of the adipokines leptin, adiponectin and resis...
متن کاملInsulin glargine affects the expression of Igf-1r, Insr, and Igf-1 genes in colon and liver of diabetic rats
Objective(s): The mitogenic effect of the analogous insulin glargine is currently under debate since several clinical studies have raised the possibility that insulin glargine treatment has a carcinogenic potential in different tissues. This study aimed to evaluate the Igf-1r, Insr, and Igf-1 gene expression in colon and liver of streptozotocin-induced diabetic rats in response to insulin glarg...
متن کامل